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Abstract. Surfaces of i-Al68Pd23Mn9 as observed in scanning tunnelling microscopy (STM) and
low-energy electron diffraction (LEED) experiments show atomic terraces in a Fibonacci spacing.
We analyse them in a bulk tiling model due to Elser which incorporates many experimental data.
The model has dodecahedral Bergman clusters within an icosahedral tilingT ∗(2F) and is projected
from the six-dimensional face-centred hypercubic lattice. We derive the occurrence and Fibonacci
spacing of atomic planes perpendicular to any fivefold axis, compute the variation of planar atomic
densities, and determine the (auto-) correlation functions. Upon interpreting the planes as terraces
at the surface, we find quantitative agreement with the STM experiments.

1. Introduction

The bulk structure of the icosahedral phases i-AlPdMn, i-AlFeCu and their modelling in
terms of a six-dimensional (6D) description has been an active research field for more than a
decade. Of the many papers on this topic, we mention only a few. Many more references
are quoted in these publications. Katz and Gratias [7] derive from previous work for i-
AlFeCu a quasiperiodic network of atomic positions. It is generated by three basic atomic
windows related to the 6D hypercubic F-lattice. They examine the interatomic distances
carefully. de Boissieuet al [2] determine for i-AlPdMn from x-ray and neutron data in detail
the decomposition of the atomic surfaces. All of these models use the 6D embedding, and
the parallel and the perpendicular space. Elser [4] generalizes and unifies these two models
and interprets them in terms of clusters occupying the odd and even vertices of the icosahedral
tiling related to the 6D hypercubic P-lattice: the odd vertices form the centres of Bergman
clusters, which then build up Mackay clusters around the even vertices. Additional atomic
positions are related to this basic structure. The Elser model was actually created for the study
of random tilings, but by construction admits a perfect tiling structure which then incorporates
the main experimental data which have led to the models given by Katz and Gratias and by
de Boissieuet al. As shown in [11], the Elser model can be taken as anetwork of atomic
positions in a tiling model, denoted byT ∗(2F) and related to the observed hypercubic F-lattice
and module. This tiling model will be used in what follows. Its composite atomic surfaces are
closely related to those of the Katz–Gratias model [7].

The surface structure of i-Al68Pd23Mn9 perpendicular to the fivefold axes has been
explored by various groups. Schaubet al [15] applied scanning tunnelling microscopy (STM)
and low-energy electron diffraction (LEED) to obtain atomic-scale information for a sputtered
and annealed surface. They observed a sequence of 11 atomically flat terraces. Two spacings
of 4.22±0.26 and 6.78±0.24 Å form a Fibonacci string of the type LLSLLSLSLL. Pentagonal
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holes of a single fixed orientation appear within these terraces. Giereret al [5,6] by dynamical
LEED studies for a similarly prepared surface confirm the quasicrystalline structure. To
interpret their data they perform dynamical diffraction calculations for assumed terminations
of a model patch from the bulk model of de Boissieuet al [2]. They find optimal agreement
for Al-rich terminations of high atomic density. A study by Ebertet al [3] of surfaces cleaved
in situ revealed terraces only after the annealing of the initially rather rough surface.

For the theory of quasicrystals, the experiments raise the question of what quasiperiodic
repetition pattern and what structure variation within planes can be rigorously obtained from
a bulk model of i-Al68Pd23Mn9. In the present paper we address these questions in the
description using the tiling model. We develop a quasiperiodic analysis similar to that of
crystal surfaces in terms of particular net-planes. To obtain exact results we cannot rely
on features seen in a model patch. Instead we make full use of the technique of windows or
coding for quasiperiodic structures. The general principles of the window technique have been
described in several monographs on quasicrystals. We illustrate them for the well-known one-
dimensional Fibonacci paradigm. We then apply the unique method of lifting and projection
between the physical (parallel) and the window (perpendicular) space, called the star-map by
Moody [14], to the icosahedral F-module, to the tiling, and to its decoration. It turns out that
our main results can be expressed in terms of the one-dimensional Fibonacci system.

We now survey the model input and the content of the following sections. Our bare tiling
model has the following data: we adopt theT ∗(2F) tiling model projected from the face-centred
hypercubic lattice(2F) ∼ D6 in E6. Upon scaling by a factor of 2, the lattice (2F) comprises
theeven-vertex points (index sum even)of the full hypercubic P-lattice whose projection was
given in [9]. For a full description of the tiling and its projection we refer the reader to [10].
Its vertex points are projected lattice points. We shall use two units of length:©5 is the length
along fivefold axes of the six basis vectorsei, i = 1, . . . ,6, of the hypercubic lattice, projected
onto one of the two invariant icosahedral subspaces,E‖ or E⊥. Along the projected twofold
axes, we choose the standard length©2 = (2/√τ + 2)©5 . To convert to atomic distances in
i-AlPdMn, we adopt from [4,11] theτ -scaled short-edge length of the tiling:

s = τ©2 = 2τ√
τ + 2
©5 ©5 → 4.56 Å. (1)

The window of the vertex points for the tiling is inE⊥ the triacontahedron [8, 10] shown in
figure 5—see later. The tiling is decorated according to Elser [4] with dodecahedral Bergman
clusters [11]. The mid-points of these Bergman clusters are placed on the projectedodd-vertex
pointsof the hypercubic lattice. Their edge length isτ−1©2 = 2.96 Å and their height along a
fivefold direction is [(2τ 2)/(τ + 2)]©5 = 6.60 Å. For all other atomic positions, most of which
do not enter the present analysis, we refer the reader to [4,11].

In section 2 we develop the window technique for the bulk tiling and its planes
perpendicular to the fivefold axes. We start in subsection 2.1 with the Fibonacci tiling and
explain the technique of windows. We briefly describe the icosahedral tilingT ∗(2F) for the
F-phase, subsection 2.2, and planes of vertex points perpendicular to a fivefold axis in a 3D
spaceE‖, subsection 2.3, and give their windows inE⊥. We shift between these planes along
Fibonacci lines, subsection 2.4, and show that most of the vertex points belong to a system of
shifted planes, subsection 2.5. In subsection 2.6 we interpret the terraces found in the STM
experiment as terminations of the bulk model. From the tiling model we prove the existence
of a full Fibonacci sequence of planes and of a spacing as found in the STM experiment, and
we predict variations of the density of vertex points along the sequence, with bounds from the
observed Fibonacci string.

In section 3 we use the decoration of the tiling to infer more structure information for
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within the planes from other atomic positions of the tiling model. In particular we look for
pentagonal structures as seen in the STM experiments [15]. We consider the dodecahedral
Bergman clusters of the Elser model [4] on the tiling. The dodecahedra have two pentagonal
vertex sets of the same orientation perpendicular to a fivefold axis. The corresponding cutting
planes are transformed in subsection 3.1 by lifting and projection to the perpendicular space.
Their window description with respect to the triacontahedron is derived. The correlation with
vertex points of the tiling gives rise to three alternative models for the structure within planes.
The predicted density of vertex points and pentagons is derived in exact form in subsection 3.2.
In subsection 3.3 we compute in closed form the Patterson function within planes for vertex
points and pentagon centres.

The bulk structure of the tiling model, analysed here up to the level of Bergman clusters,
displays for the planes a repetition and structure pattern in line with the terrace structure found
in the experiments [15] which stimulated the present analysis. A complementary approach
to the terrace structure, based on generating a model patch, is given in [12] and confirms the
present analysis.

2. Tilings and windows

2.1. Fibonacci lines, their windows, and the search for the string LLSLLSLSLL

We recall the well-known projection and window technique for the Fibonacci tilingT . We
shall emphasize the window technique since it will be needed when we apply Fibonacci lines
to the icosahedral tiling in subsections 2.4–2.6. Let3 be the square lattice in 2D whose edge
length we adjust for convenience to

√
τ + 2, τ = 1

2(1 +
√

5). In a lattice basis the points of3
are

x = n1e1 + n2e2. (2)

In a system of coordinates(x‖, x⊥) rotated byφ with respect to the natural basis:
c = cos(φ) = τ/√τ + 2 ands = sin(φ) = 1/

√
τ + 2, the basis vectors are

e1 = (c,−s)
√
τ + 2 e2 = (s, c)

√
τ + 2 (3)

and the coordinates of the lattice points become

(x‖, x⊥) = (n1e1‖ + n2e2‖, n1e1⊥ + n2e2⊥)
= (x‖(n1, n2), x⊥(n1, n2)) = (n1τ + n2,−n1 + n2τ). (4)

The projections(x‖, x⊥) form two τ -modules on the orthogonal linesE‖, E⊥ respectively.
There is aunique mapx‖(n1, n2)⇔ x⊥(n1, n2) between these modules, corresponding to the
star-map of Moody [14], and there is aunique liftingof x‖(n1, n2) or x⊥(n1, n2) to a point of
3. The projectionsx‖(3), x⊥(3) coverE‖, E⊥ densely and uniformly.

Upon choosing inE⊥ the windowf⊥ := (−1, τ ], whose length|w⊥| = τ + 1 is the
projection of a unit square toE⊥, the vertex set of the Fibonacci tilingT in E‖ is defined as

v(T ) = {x‖(n1, n2)|x⊥(n1, n2) ∈ f⊥}. (5)

The end-points of the window are restricted in order to avoid ambiguities. WhenT is lifted
back into3 ∈ E2, it forms the vertex set of a continuous staircase formed by edge lines as
shown in figure 1.

The projections of the steps toE‖ form the familiar Fibonacci tiling with two tiles S, T
of length 1, τ respectively. Withx‖ increasing, adjacent tiles form the vertex configurations
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Figure 1. The Fibonacci tiling is the projection of a staircase, formed by edge lines in a square
lattice, to a lineE‖ of slopeτ−1. The successive verticesx‖ of the staircase may be enumerated
by the single integerN = n1 + n2. Projected tox‖, the edge lines form the Fibonacci tiling with
two tiles S, L of length 1, τ respectively. The projectionsx⊥(N) of the vertices to the orthogonal
spaceE⊥ fall into a windowf⊥ = (−1, τ ] of lengthτ + 1.

LS, LL or LS. The windows inE⊥ for these vertex configurations can be shown to form
subwindows off⊥ given by

f LS⊥ = (−1, 0]

f LL⊥ = (0, τ − 1]

f SL⊥ = (τ − 1, τ ].

(6)

We now wish to compare and analyse Fibonacci tilings with different starting points. Because
of the uniform dense covering, we may choose inE⊥ an arbitrary initial pointc⊥ ∈ w⊥ and
associate with it an initial point of a tilingT (c⊥). We label the initial vertex by(0, 0) ⇒ 0
and the successive vertices ofT (c⊥) by the single integerN = n1 + n2. From the window
condition we can generatex‖(N), x⊥(N) step by step according to

x⊥(N + 1) =
[
x⊥(N)− 1↔ (x⊥(N)− 1) ∈ f⊥
x⊥(N) + τ ↔ (x⊥(N) + τ) ∈ f⊥

]
x‖(N + 1) =

[
x‖(N) + τ
x‖(N) + 1.

] (7)

The steps inE‖ propagate the tiling by adding a new tile L or S. For later purposes, like in
the determination of densities of points in subsection 3.2, we emphasize the propagation as a
function ofN in terms of the perpendicular coordinate in the window.

We adjust the perpendicular coordinate to the mid-point of the window and scale it by a
factorτ to obtain the new variable

y⊥(N) := τx⊥(N)− 1
2 (8)

whose windoww⊥ = (− 1
2τ

3, 1
2τ

3] now has the length|w⊥| = τ 3 with the central subwindow
for LL vertex configurations of length|wLL⊥ | = 1. It can be shown that the subset of LL
vertices of the original tiling form another Fibonacci vertex set scaled by a factorτ 3. The
functiony⊥(N) is plotted in figure 2 for four initial values from the subwindowwLL⊥ . This
figure illustrates the variety of sequences as a function of the initial value. Successive values
are connected by straight lines. The reason for starting at an LL subwindow will become
apparent when we go to the icosahedral tiling in subsection 2.4.
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Figure 2. Four Fibonacci lines starting at an LL vertex are coded by four initial points in a vertical
subwindow scaled byτ−3. The vertical coordinate isy⊥(N) of equation (8). For steps numbered
from 0 to 24, the lines connect the images in the window for these four points. Each step produces
in E‖ a long or short interval of the corresponding Fibonacci line.

With the window technique we search for the finite string LLSLLSLSLL found in the
terrace spacing of the experiment [15]. For a Fibonacci line coded by the initial point
y⊥(0) = − 1

2, this string occurs at the pointsN = 9, . . . ,19; compare figures 2 and 6 (see
later). For other initial points, the string would occur at some other step. We infer all possible
occurrences of the string as conditions with respect to the window: the string will be stable
under vertical shifts1y⊥(0) of the initial point as long as its highest valuey⊥(17) and its
lowest valuey⊥(14) do not pass the limits± 1

2τ
3 respectively of the windoww⊥. These

window conditions are independent of the initial point. Clearly the appearance of the string
puts narrow bounds on the corresponding values ofy⊥; compare subsection 2.6.

2.2. Icosahedral tilings

The construction of 3D tilings follows the paradigm given by the Fibonacci line. The pro-
jections are now determined by requiring non-crystallographic and in particular icosahedral
point symmetry after projection. It is well known that an icosahedral tilingT P with two
rhombohedral tiles arises by icosahedral projection to 3D from the primitive hypercubic P-
lattice and module in 6D [9].

In two orthogonal 3D spacesE‖, E⊥, we find the six fivefold, ten threefold and fifteen
twofold axes associated with the icosahedral group. The six primitive basis vectorse1, . . . , e6

of the hypercubic lattice upon projection point along fivefold axes. Their length we denote by
©5 , and their directions we choose as follows [10]: inE‖ we take cos(e1‖, ei‖) = 1/

√
τ + 2,

i = 2, . . . ,6, and fori = 2, . . . ,5 pass fromei‖ to ei+1‖ by a rotation arounde1‖ with angle
2π/5. InE⊥ we take cos(e1⊥, ei⊥) = −1/

√
τ + 2, i = 2, . . . ,6, and fori = 2, . . . ,5 pass

fromei⊥ toei+1⊥ by a rotation arounde1⊥with angle 4π/5. All vectors along twofold axes arise
from projections of(ei ± ej ), i 6= j . Their shorter length we denote by©2 = (2/√τ + 2)©5 .

The icosahedral quasicrystals i-AlFeCu and i-AlPdMn are indexed from their diffraction
pattern according to the hypercubic face-centred or F-lattice and -module rather than the
primitive P-module. The hypercubic F-lattice, scaled by a factor of 2 and denoted here as (2F),
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may be viewed as the subset of even lattice points (index sum even) from the full hypercubic
lattice in 6D.

Turning our attention to this lattice and module, we briefly summarize the construction
of the icosahedral tilingT ∗(2F) associated with the F-lattice and given in [10]. In both 3D
spaces we have 6D modules whose bases can be formed for example from three short and
three long vectors along three selected twofold axes. Via the unique lifting and projection,
there is a one-to-one mapq‖ ⇔ q⊥, the star-map of [14], between pointsq‖ andq⊥ of the two
modules inE‖ andE⊥. For simplicity we suppress the basis and the six integers inq‖, q⊥
which generalize equation (4) and underlie this map. The vertex points of the tilingT ∗(2F) are,
as a generalization of equation (5), given by

v(T ∗(2F)) = {q‖|q⊥ ∈ triacontahedron} (9)

i.e. the projectionsq‖ ∈ E‖ of those lattice points whose projectionsq⊥ ∈ E⊥ fall into the
triacontahedral window; compare figure 5, later. The projections{q⊥} fill the triacontahedron
densely and uniformly. The triacontahedron is the icosahedral projection toE⊥ of the Voronoi
or Wigner–Seitz cell of the F-lattice in 6D. The tilingT ∗(2F) has six tetrahedral tiles. In its
present simple form, we need only two tetrahedra with threefold symmetry axes. The vertices
of these two tetrahedra coincide with four even vertices of the two rhombohedra associated
with the tiling T P. The simple form of the tilingT ∗(2F) is fully described by putting atoms
into positions on the full rhombohedral tiles but allowing for the distinction of even and odd
vertices, as is done in the Elser model [4, 11]. We shall need only the even- and odd-vertex
points.

The relationship of the tilingsT ∗(2F) andT P may be summarized as follows: the triaconta-
hedral windows for the vertex sets coincide. The modules differ from one another: the (2F)
module is the even submodule of the P-module. By expanding each of the two threefold-
symmetric tetrahedra back into the corresponding rhombohedron and dropping the distinction
between even and odd vertices we can locally deriveT P from T ∗(2F).

2.3. Planes perpendicular to fivefold axes

We turn to planes in the tilingT ∗(2F). Fix in E‖ a fivefold axis parallel toe1‖ as in figure 4,
later, and consider vertex pointsq‖ in a plane perpendicular to it. Next we pass toE⊥; consider
the corresponding fivefold axis parallel toe1⊥ and the imagesq⊥ of the vertex pointsq‖ from
the plane under the one-to-one map. It turns out that these imagesq⊥ ∈ E⊥ lie again in a plane
perpendicular to the fivefold axis. In addition they must be points from the triacontahedron.
Hence we get the following result:

Proposition 1. The window for vertex pointsq‖ from the tiling T ∗(2F) in a fixed plane
perpendicular to a fivefold axis is inE⊥ the intersection of a plane perpendicular to the
corresponding fivefold axis with the triacontahedron.

The triacontahedron is shown in figure 5—see later—in a view perpendicular to a fivefold
axis. The distance from the centre to a fivefold vertex isτ©5 , where©5 is the standard length
along a fivefold axis. The triacontahedron with respect to this fivefold axis has a central
decagonal prism of thickness [2τ−1/(τ + 2)]τ©5 . Kepler in 1619 [8] not only introduced the
triacontahedron, but also visualized these decagonal prisms and denoted them by the letters
Xx; see figure 3.

The central decagonal prism of the triacontahedron when seen as a subwindow for part
of the tiling T ∗(2F) has a particular significance, as is shown in [13]: any planar decagonal
intersection of the triacontahedron inE⊥ determines inE‖ an infinite planar tiling TTT with
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Figure 3. Kepler’s decomposition of the triacontahedron into a central decagonal prism Xx and
two shells.

two golden triangles; compare [1]. With respect to the full 3D tilingT ∗(2F), this planar subtiling
is formed by faces of tetrahedral tiles.

The planar intersections of the triacontahedron outside the decagonal prism are windows
for planes of vertex points which in general do not form a planar tiling. From the uniform
covering of the window it follows that the density of vertex points in all planes is proportional
to the area of its window, i.e. of the corresponding intersection of the triacontahedron. We
shall compute this density in subsection 3.2.

2.4. Fibonacci shifts between parallel planes

The planar TTT subtiling has the property that through any vertex point there passes at least one
infinite Fibonacci line. In terms of its decagonal subwindow this results from the geometric
property that any interior point belongs to at least one subwindow for an infinite Fibonacci line.
InE‖ this Fibonacci line points along a twofold axis associated with two vectors whose length
scales byτ . All subwindows for a fixed Fibonacci line are sections of lengthτ 2©2 on parallel
lines perpendicular to and bounded by opposite rectangular faces of a decagonal prism.

As the initial plane we shall choose a reference plane whose vertex points form a
triangle TTT pattern. All of these planes have the same highest density of vertex points;
see subsection 3.2. To shift between planes perpendicular to a fixed fivefold axis, we shall use
vectors along twofold axes outside this plane. From the orbit inE‖ of the twofold axis with
respect to the fivefold one, we pick two perpendicular twofold coplanar axes 2, 2′ which form
with the 5-axis the angles arccos(1/

√
τ + 2) = 58.3◦, arccos(τ/

√
τ + 2) = 31.7◦; see figure 4.

In the notation of [10], we choose the axis 5 alonge1‖, the axis 2 along the short and long vectors
−(e2 + e3)‖, (e1 + e5)‖, and the axis 2′ along the short and long vectors(e1 + e5)‖,−(e4 + e6)‖
respectively.

The vectors along the twofold axis 2 from equation (1) have theτ -scaled model lengths
τ©2 , τ 2©2 . By multiplication with the cosine of the corresponding angle we get the parallel
spacings of planes perpendicular to the fivefold axis 5. These spacings become [2τ/(τ + 2)]©5
and [2τ 2/(τ + 2)]©5 respectively. By comparison, the two vectors along the twofold axis 2′

yield along the fivefold axis spacings scaled by a factorτ . Therefore the latter vectors will
not generate additional parallel planes. We obtain the short and long spacings 4.08 and 6.60 Å
respectively, fully in line with the terrace spacing observed in [15] and quoted in section 1.
So we have identified in the bulk tiling model the shift vectors which generate the terrace
structure.

To ensure that, starting from a fixed plane, we generate by shifts an infinite system of
parallel planes, we turn toE⊥. InE⊥ the three axes 2, 2′, 5 remain coplanar but the directions
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Figure 4. Two typical perpendicular twofold axes 2, 2′ can be chosen within a plane with a fivefold
axis 5. A plane perpendicular to this axis can be shifted from the origin by vectors along these
twofold axes.

Figure 5. Three decagonal prisms of the triacontahedron inE⊥: the first one has its fivefold axis 5
in the vertical direction. The second and third prism have opposite rectangular faces perpendicular
to two twofold axes 2, 2′ coplanar with the axis 5.

and angles of 2 and 2′ are interchanged; see figure 5. We get infinite Fibonacci lines along
the axes 2, 2′ if the vectors along these axes can be associated with decagonal prisms of the
triacontahedron. Two decagonal prisms with this property and associated with 2, 2′ are shown
in figure 5.

The initial reference plane was chosen with the triangle tiling and hence has as its window
a decagonal section through the triacontahedron perpendicular to the fivefold axis. An infinite
system of parallel planes will arise, provided that we select a starting point which also belongs
to a Fibonacci window associated with vectors say along the axis 2. The projection of the full
Fibonacci window along the fivefold axis inE⊥ by multiplication with cos(2, 5) = 1/

√
τ + 2

becomes [2τ 3/(τ + 2)]©5 . The projection of its central subwindow for LL vertices equals the
thickness [2/(τ + 2)]©5 of the decagonal prism. We conclude that, among the parallel planes
shifted along the infinite Fibonacci line in the direction 2, the reference plane and in fact any
dense plane occurs at the LL vertices.

We summarize theinformation obtained so far on parallel planes of vertex points
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q‖ in the tiling T ∗(2F), generated by Fibonacci lines along twofold axes: Starting from
a dense reference plane, we generate an infinite set of parallel planes. They follow a
Fibonacci spacing with perpendicular short and long distances [2τ/(τ + 2)]©5 = 4.08 Å
and [2τ 2/(τ + 2)]©5 = 6.60 Å, fully in line with the STM observations of terraces. The dense
planes occur at all LL vertices of the generating Fibonacci line. Other parallel planes in the set
will have a lower density of vertex points. The string LLSLLSLSLL analysed in subsection
2.1 can now be converted into a sequence of parallel planes of varying density.

To complete the analysis of parallel planes, we must find out what fraction of all vertex
pointsq‖ ∈ T ∗(2F) is reached within this infinite sequence of planes.

2.5. Parallel planes are connected by Fibonacci lines

We wish to show that we can indeed reach from a fixed dense reference plane most vertex points
q‖ by shifts along Fibonacci lines. For this purpose we consider only those vertex pointsq‖
which lie on at least one infinite Fibonacci line. From the window side we know that this is the
case ifq⊥ is a point from any decagonal prism. There are six such prisms, and this motivates
the definition of a new window:

Definition 2. The decagonal prismXx approximation: we analyse only those pointsq⊥ of the
triacontahedral window which belong to at least one decagonal prism—that is, to the union
∪6
jprismj . We omit in this approximation the pointsq⊥ from small parts of the triacontahedron

close to its fivefold vertices; compare figure 5.

The vertex pointsq‖, withq⊥ belonging to this new window, have the following properties:

Proposition 3. Consider vertex pointsq‖ in a plane parallel to a fixed dense TTT infinite
reference plane. Among them there is a point on an infinite Fibonacci line which intersects (as
a continuous line) the reference plane.

Proof. Through any point coded in the decagonal prism approximation there runs at least one
infinite Fibonacci line. If it intersects the reference plane the proof is complete. If it runs
parallel to the reference plane, we can (proof omitted) in at most two parallel steps pass to
another point with an intersecting Fibonacci line. �

Proposition 4. If an infinite Fibonacci line intersects as a continuous line a TTT plane, it hits
this plane in a vertex point.

Proof. The points of the infinite reference plane form the vertices of the planar TTT subtiling
with faces and the points of the non-parallel infinite Fibonacci line form the vertices of a linear
subtiling with edges of the 3D tilingT ∗(2F). Both subtilings are parts, hence their intersection
is a vertex of the full tiling. �

The two propositions allow us to code, inE⊥, planes of vertex points, parallel inE‖ to a
first dense reference plane perpendicular to 5, according to their intersections with Fibonacci
lines along the axis 2 of figure 4:

Proposition 5. Any vertex plane perpendicular to a fivefold axis has at least one point
connected to the reference plane by an infinite Fibonacci line. Conversely, by following all
non-parallel Fibonacci lines from the reference plane we reach any parallel vertex plane.
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We have shown that all vertex pointsq‖ such thatq⊥ belongs to the Kepler Xx model appear
in an infinite sequence of parallel planes in the order and spacing of a Fibonacci line. The
analysis of the 1D Fibonacci system given in subsection 2.1 now applies to the 3D tiling. The
stepwise generation inE⊥ of the 1D Fibonacci system shown in figure 2 can now be converted
into a stepwise generation inE⊥ of parallel planes, enumerated by the integerN : starting at
an LL vertex means starting at a dense plane. The value of the perpendicular coordinatey⊥
yields the value of a coordinateητ©5 ,−1 6 η 6 1, from the centre of the triacontahedron
along the fivefold axis. The explicit relation is

η(N) = 2τ−1

τ + 2
y⊥(N). (10)

In figure 6 we plot the projection of the triacontahedron together with the values ofy⊥(N)
connected by lines. Each value determines the height of a corresponding horizontal section
of the triacontahedron. Since the point density in the corresponding plane of the tiling is
proportional to the area of this section, figure 6 provides insight into the variation of this
density from step to step.

Note that within the Fibonacci window we do not reach the highest absolute values ofη.
For the additional points in figure 6, see subsection 2.6.

Figure 6. Vertical values ofy⊥(N) ∼ η(N), equation (10), determine horizontal sections inE⊥
of the triacontahedron as windows for planes. The values are connected by lines and follow the
Fibonacci coding. The total width of the vertical window is [2τ2/(τ + 2)]τ©5 . The triacontahedron
has the vertical diameter 2τ©5 . The numbers in the second row assign planes corresponding to
the terraces found in [15]. The bars labelled 1−, 9−, 3+, 6+, 11+ mark values ofη for additional
low-density planes of vertex points.

2.6. From planes to terraces at the surface

We have found in subsection 2.4, from the bulk model, sequences of planes with a spacing
that agrees with the terrace spacing found in [15]. We now interpret terraces at the surface
as particular planar terminations from the bulk tiling model. From figure 2 we have already
identified a string in correspondence with the observed string of terraces. With the numbers
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1, . . . ,11 in the second horizontal row of figure 6, we now assign planes and valuesη1 to
eleven planes which correspond to the spacing of eleven high or low terraces found in [15].
The numbers follow the terraces in a direction into the bulk material.

The numbersη1 given in table 1—see later—are not unique, but the appearance of
the finite string puts narrow bounds on their range: maximal shifts upwards by1η =
[2τ−1/(τ + 2)](2τ − 3) fromN = 9 or downwards by1η = [2τ−1/(τ + 2)](−3τ + 5) from
N = 14 are compatible with the appearance of the string, but of course give different values
of the density and of the Patterson function.

As in the patch analysis given in [12], there appear additional vertex planes inE‖ with
a spacing scaled byτ−1 which do not yield terraces in the experiment. This narrow spacing
cannot be coded by a single Fibonacci line. With respect to the triacontahedron in figure 5,
it requires a vertical shift1η = 2τ 2/(τ + 2) in E⊥. This shift can be produced by the sum
of two vectors of lengthτ©2 pointing along the axes 2 and 2′ in figure 2 respectively. The
summed vector (not parallel to the fivefold axis) connects points in the triacontahedron only if
the initial point obeysτ/(τ + 2) 6 |η| 6 τ 2/(τ + 2). In the selection of points of figure 6, the
valuesη of the corresponding five final points are denoted by 1−, 3+, 6+, 9−, 11+. The± sign
codes an additional vertex plane shifted inE‖ by 2τ−1/(τ + 2) in units ofτ©5 above or below
the plane with the fixed number. The positions of these planes agree with the patch analysis
of [12]. All of these additional planes have very low densities of vertex points.

In subsection 3.2 we compute the exact model density of vertex points in the planes which
decreases with the absolute value ofη1. From figure 6 it can be seen that the planes 3, 6, 9 in
the string have the highest values of|η1| and hence the lowest density. In the experiment [15]
these planes correspond to terraces of minimum measured planar size.

3. Clusters, pentagonal faces and cuts, and correlations in planes

We proceed to an analysis of the more detailed model structure within the planes. So far
we have looked at planes occupied by vertex points from the tiling. The full set of atomic
positions [4,11] comprises more points in various classes. The repetition pattern and variation
of the density for parallel planes found in section 2 is a general property of the tiling and applies
to any set of atomic positions within planes perpendicular to a fivefold axis. If atomic positions
of two different types appear within the same initial fixed plane, their repetition pattern and
variation of density follow the same pattern as found for vertex points, but may propagate from
different initial conditions. The relative density and the correlation of different types of atomic
position sited within the same plane will then showsystematic variationsalong a sequence of
planes.

We consider in this section additional atomic positions from the Bergman clusters. The
vertex positions of Bergman clusters on the tiling will produce points in parallel planes. This
holds true in particular for top faces of Bergman clusters which run perpendicular to the chosen
fivefold axis. They are of particular interest as candidates for the pentagons found in [15].
Upon comparing the height of 6.60 Å for the Bergman clusters with the lowest terrace spacing
of 4.08 Å we already conclude that these clusters arecut at quasicrystal surfaces. A second
larger type of pentagon arises from a top cut at the height of 4.08 Å through five vertices of
the Bergman dodecahedra. In the full model [4,11] of AlPdMn these top-face pentagons have
central atoms in a lowered central position. Therefore these pentagon faces would produce at
their centres the observed holes in the terraces [15]. We shall examine the correlation of both
types of pentagon with vertex points of the tiling.
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3.1. Three models for correlations of pentagons and vertex points

We analyse three significant types of plane perpendicular to a fivefold axis taken from the bulk
model and explore the correlation within these planes.

(i) In the first-model analysisthe vertex points of the tiling dominate the sequence of
perpendicular planes, characterized by the valuesη1 as before.

Consider the relation of the Bergman top pentagons with respect to these planes. As
mentioned in the introduction, the centres of the Bergman dodecahedra take the positions of
those (odd) points of the primitive P-lattice which are dropped when going from P to (2F). This
has the consequence that the Bergman centres can be grouped into shifted planes perpendicular
to a fivefold axis. The planar densities of Bergman clusters in these planes must follow the same
rules, and have the same minima and maxima as are given for vertex positions in subsections
2.4 and 3.2.

The height of the Bergman dodecahedra is such that a fivefold vector from the plane to the
centre, passing through a pentagonal face, has the length and direction of a typical vectore5‖;
compare figure 7. With the chosen enumeration of terraces we follow them in the direction
of the vectore1‖, in the directionof the fivefold axis in figure 4. Now we look for Bergman
clusters with a centre displaced below and a top pentagon within a fixed plane of vertex points.

Figure 7. A Bergman dodecahedron touches a top pentagon from below a plane of vertex points
marked by the top horizontal line. The vectore1‖ pointsdownwards. A typical vector downwards
from the plane to the Bergman centre ise5‖. A vector like (e1 − e5)‖ − e5‖ runs from a planar
pentagonal top cut through the dodecahedron, marked by the lower horizontal line, to the Bergman
centre.

Transforming the vectore5‖ from E‖ to E⊥—compare subsection 2.2—one finds the
coding points for all centres of the Bergman dodecahedra displaced bye5⊥ against the direction
of the axis5 of figure 5, and hence downwards in figure 5, from the plane coding the vertex
points. So the planes with a correspondingdownwards shift1η = 1/(τ + 2) form another
Fibonacci sequence that codes the Bergman centres. The shifted valuesη2 for this sequence
are given in the second column of table 1—see later. In figure 8 we show the two values
η1, η2 as functions ofN = 0, . . . ,24. If the vertical shift from the crosses to the circles
equals1η = 1/(τ + 2), the Bergman top pentagons touch the vertex plane from below. This
holds true except for the planesN = 6, 11, 14, 19; see figure 8. In the Fibonacci sequence of
planes of vertex points this corresponds to an LS vertex, but in the planes of Bergman faces it
corresponds to an SL vertex. Therefore no Bergman top faces can appear in these planes of
vertex points. In the string of planes 9, . . . ,19→ 1, . . . ,11 this would occur at the planes
11, 14, 19→ 3, 6, 11. These planes carry instead the larger Bergman top-cut pentagons; see
model (iii) below.

Figures 8 and 9 demonstrate that planes formed from atomic positions of different types
(vertex points or pentagon centres) follow the same Fibonacci propagation law. Due to
systematic shifts in the parameterη for different types, the corresponding densities, which
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Figure 8. The valuesy⊥(N) ∼ η(N) forN = 0, . . . ,24 in model (i) determine horizontal sections
of the triacontahedron as windows for planes of vertex points (η1, crosses) or of centres for Bergman
top pentagons (η2, circles).

Figure 9. The valuesy⊥(N) ∼ η(N) forN = 0, . . . ,24 in model (ii) determine horizontal sections
of the triacontahedron as windows for planes of centres for Bergman top pentagons (η1, crosses)
or of vertex points (η3, circles).

are functions of this parameter, propagate differently even for atomic positions of different
types within the same initial plane.

(ii) In the second-model analysisof the planes determined byη1 we assume that they
are dominated by top pentagons of Bergman dodecahedra located below the plane; compare
figure 9. The additional presence of vertex points on these planes is now coded by apositive
shift1η = 1/(τ + 2). In table 1, later, we give the new valuesη3 for these vertex planes
and show them in figure 9. Additional vertex points appear except in the selected planes
9, 17→ 1, 9.
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(iii) In the third-model analysiswe assume that the planes determined byη1 are dominated
by pentagons, scaled byτ and corresponding to top cuts through Bergman dodecahedra below
the plane. A typical vector from the plane for this cut to the centre of the Bergman cluster
in the notation of subsection 2.2 is(−e5‖ + e1‖) − e5‖ indicated in figure 7. The edge size
©2 = 4.78 Å of the pentagons would be in line with the holes observed in [15], and it would
also lead to a central hole. Again we ask about the presence of additional vertex points.
From the positions of these pentagons relative to the vertex planes as shown in figure 7 we
deduce inE⊥ a shift1η = (2τ + 1)/(τ + 2). At N = 0 this shift modulo the window
size becomes−1/(τ + 2) which then generates the valuesη3 given in table 1, later, and
shown in figure 9. Vertex points can occur only if the relative shift from crosses to circles is
1η = η3 − η1 = (2τ + 1)/(τ + 2). This happens only in the selected planes 9, 17→ 1, 9;
otherwise there are no vertex points within these planes. A further shift analysis shows that
any plane containing Bergman top pentagons cannot contain Bergman cut pentagons and vice
versa. In model (iii) there appear Bergman top-cut pentagons in the densest planes. A closer
inspection shows that these pentagons share vertices and form an almost connected graph.

The three model cases considered yield three interpretations of bulk planes as termin-
ations for the terraces observed in [15], all in line with the relative spacing. In cases (i), (ii) the
planes carry vertex points or pentagons corresponding to the faces of Bergman dodecahedra.
In case (iii) the planes carry the larger cut pentagons and almost no vertex points.

3.2. Planar density of atomic positions

We compute the exact areaF(η) of a planar section of the triacontahedron as a function of
η,−16 η 6 1. This function is proportional to the exact density of vertex pointsD(η) in the
plane coded by this section. The result is

06 |η| 6 τ−1

τ + 2
: F(η) = (τ + 2)−3/2 [10τ ] (11a)
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The functionF(η) is plotted in figure 10. The maximum isF(0) = 10τ(τ + 2)−3/2 = 2.3511;
the maximum value ofη for the Fibonacci sequence of planes is

|η| = τ 2(τ + 2)−1 = 0.7236. (12)

These values are marked by vertical and horizontal lines in figure 10.
The density can be converted into the absolute density of vertex points by considering

the densest planes with a triangle pattern and its vertices: in the triangle pattern, each triangle
contributes, because of the sum122π of its angles, a weight12 to the number of vertex points.
In terms of the short-edge lengths, the areasf1, f2 and relative frequenciesν1, ν2 of the large
and small triangles are

f1 = s2 τ

4

√
τ + 2 f2 = τ−1f1 ν2 = τ−1ν1. (13)
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Figure 10. The functionF(|η|) for a plane fixed byη > 0 is, inE⊥, the area of a planar section of
the triacontahedron. The horizontal line marks the lowest value ofF , the vertical line the highest
value of|η| in a Fibonacci sequence of planes. InE‖,F(|η|) is proportional to the density of points
or pentagon centres within a plane.

These expressions yield for thedensity of vertex points(number of vertices per unit area) the
value

D(0) = 1

2f1

τ 3

τ + 2
= s−2 2τ 2

(τ + 2)3/2
. (14)

In the present model we put for the short-edge lengths = τ©2 = τ(2/
√
τ + 2)©5 and

©5 = 4.56 Å, equation (1), to obtain the model value

Dmax,(i) = D(0) = 12.6× 10−3 Å
−2
. (15)

The density of vertex points in a plane for fixedη is now computed as

D(η) = D(0)F (η)
F (0)

. (16)

The lowest density in a Fibonacci sequence of planes from equations (14), (15) is

Dmin = 1

2τ
D(0) = 0.3090D(0). (17)

These values of the density refer to vertex positions in the tiling. All other atomic positions
on the tiles will of course lead to other specific atomic densities and correlations.

The maximum density of vertex points, associated with model (i), is given in equation (16).
The same maximal density applies to the centres of Bergman top faces in model (ii). Each
pentagon contributes five vertex positions which would yield a factor of 5 for the pentagon
vertex density. For model (iii) with the larger pentagons, the maximum density of centres is
still the same. For the density of pentagon vertices one should not multiply by a factor of 5: it
turns out that these larger pentagons in a dense plane can share vertices. An exact computation
of the maximum density for the vertices of large pentagons yields (proof omitted)

Dmax,(iii ) = 7τ + 4

τ 3
Dmax,(i) = 3.6180Dmax,(i). (18)
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From the density we can compute the average distance by comparison for example with
a tiling by equilateral triangles. For such a tiling, the density of points is related to the edge
lengtht by

D3(t) = t−22/
√

3. (19)

If we equate this density with the expression (15) found for the dense vertex planes, we obtain
an equivalent distanceteq = 9.5 Å.

In columns 5–7 of table 1 we giveF for the three values ofη. Note that, in view of the
three models discussed in subsection 3.1, the three values ofF in a row do not always refer to
the same plane.

Table 1. The valuesη1, η2, η3 as functions ofN = 0, . . . ,24 code inside the triacontahedron
Fibonacci sequences of planes perpendicular to a fivefold axis. These values are associated
alternatively with vertex points, pentagonal faces, and cuts of Bergman dodecahedra. Columns
5–7 give the values ofF(ηi), equal to the area of planar sections through the triacontahedron
and proportional to the relative density of points. The rows 9, . . . ,19 correspond to the terraces
1, . . . ,11 of [15].

N η1 η2 η3 F(η1) F (η2) F (η3)

0 −0.1708 −0.4472 0.1056 2.3511 1.9021 2.3511
1 0.7236 0.4472−0.4472 0.7265 1.9021 1.9021
2 0.1708 −0.1056 0.4472 2.3511 2.3511 1.9021
3 −0.3820 −0.6584 −0.1056 2.0891 1.0541 2.3511
4 0.5125 0.2361−0.6584 1.6746 2.3261 1.0541
5 −0.0403 −0.3167 0.2361 2.3511 2.2260 2.3261
6 −0.5931 0.5777−0.3167 1.3507 1.4162 2.2260
7 0.3013 0.0249 0.5777 2.2510 2.3511 1.4162
8 −0.2515 −0.5279 0.0249 2.3129 1.6164 2.3511
9 0.6430 0.3666−0.5279 1.1269 2.1259 1.6164

10 0.0902 −0.1862 0.3666 2.3511 2.3497 2.1259
11 −0.4626 0.7082−0.1862 1.8512 0.8067 2.3497
12 0.4318 0.1554 0.7082 1.9508 2.3511 0.8067
13 −0.1210 −0.3974 0.1554 2.3511 2.0495 2.3511
14 −0.6738 0.4971−0.3974 0.9796 1.7311 2.0495
15 0.2207 −0.0557 0.4971 2.3365 2.3511 1.7311
16 −0.3321 −0.6085 −0.0557 2.1982 1.2835 2.3511
17 0.5623 0.2859−0.6085 1.4800 2.2733 1.2835
18 0.0095 −0.2669 0.2859 2.3511 2.2969 2.2733
19 −0.5433 0.6276−0.2669 1.5565 1.1980 2.2969
20 0.3512 0.0748 0.6276 2.1600 2.3511 1.1980
21 −0.2016 −0.4780 0.0748 2.3456 1.7986 2.3511
22 0.6928 0.4164−0.4780 0.8851 1.9966 1.7986
23 0.1400 −0.1364 0.4164 2.3511 2.3511 1.9966
24 −0.4128 −0.6892 −0.1364 2.0070 0.9033 2.3511

The three models (i), (ii), (iii) given in subsection 3.1 yield different density valuesF .
In model (i), the density of vertex points and centres of Bergman top faces is given byF(η1)

and, with exceptions, byF(η2). In the plane 16→ 8, the density of Bergman faces becomes
D = 6.8× 10−3 Å−2. In model (ii), the density of Bergman top faces and vertex points is
given byF(η1) and, with exceptions, byF(η3). In model (iii), the density of Bergman top
cuts is again given byF(η1).

The density of pentagonal holes in the experimental data [15] has approximately [12] the
valueD = 4.2× 10−3 Å−2. This value would favour model (i) with Bergman top faces in
planes dominated by vertex points.
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3.3. Patterson analysis in planes

Consider the general Patterson functionP(x‖) of a quasiperiodic point set with a window W
at each point of the lattice3. Let v‖ be a shift vector projected from a lattice vectorv. Let
χ(x⊥) be the characteristic function of the window W for the lattice points projected toE⊥.

Proposition 6. The Patterson function inE‖ at x‖ = x − x⊥ is given by

P total(x‖) =
∑
v∈3

δ(x‖ − v‖)
∫

W
χ(x⊥)χ(x⊥ − v⊥) dx⊥ =

∑
v∈3

δ(x‖ − v‖)P (v⊥). (20)

We shall putP(v‖) = P(v⊥). A Patterson analysis within a plane perpendicular to the
fivefold axis 5 with a fixed shift vectorv‖ parallel to this plane involves the following notions
for E⊥: consider the corresponding planar section of the triacontahedron with an intersection
at ητ©5 along the fivefold axis 5. The values ofη for the eleven selected planes are given in
table 1 both for the vertex points and for the centres of Bergman dodecahedra touching the
vertex plane from below. The area of the planar section is proportional to the densityD(η) of
vertex points. The terraces 2, 5, 10 in this interpretation are dense vertex planes. The terraces
2 and 7 have the highest, and the terrace 6 the lowest density of Bergman faces.

The Patterson function from proposition 4 is computed as follows: shift the planar section
by the vectorv⊥ parallel to itself. Compute the area of the intersection of the shifted and
unshifted section. This area is proportional to the value of the Patterson function inE‖ at the
point v‖. The value ofP(0) is proportional to the density of points. We may also normalize
by plottingP(v‖)/P (0).

In acircle approximationwe proceed as follows.
We use the exact areaF(η) of a planar section of the triacontahedron as a function ofη.
For any fixed value ofη we compute the radiusr(η) of a circle with the same area as the

section; hence,

r(η) :=
√
π−1F(η). (21)

This amounts to replacing the triacontahedron by a rotational surface whose circular areas (and
hence density values) for anyη are equal to those of the triacontahedron. Then we approximate

Figure 11. The Patterson functionP(η, v⊥). Forv⊥ = 0 it reduces toF(η).
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the Patterson function by using these circles instead of the polygonal sections as functions of
η. In this approximation, the Patterson function only depends on|v⊥|.

The Patterson functionP has a smooth behaviour in terms of the two variablesη andv⊥.
This expression is shown in figure 11. Forv⊥ = 0 it reduces to the functionF(η), and for
v⊥ = 2r(0) it must go to zero.

Figure 12. The Patterson functionP corresponding to the valuesN = 16→ 8 for the values
η1, η2, η3 from table 1, represented by the areas of circles in a plane. The upper right-hand circle
stands for 0:v‖ = 0; the first point I′ to its left is at a distance|v‖| = 7.78 Å; the others are labelled
by Roman numerals I, . . . ,X in correspondence with [15].

For the plane number 16→ 8, we give in figure 12 the values of the Patterson functionP

for η1, η2, η3, represented by areas of circles, as functions of the eleven pointsv‖ selected in a
plane as in [15].

In figure 13 we present the same values as functions of the ten Roman numerals which
label the peak positionsv‖. It can be seen thatP(η2) yields the lowest density and the strongest
relative variation, andP(η1) andP(η3) are very similar, but the latter yields the highest density.

We can now compare the three different models (i), (ii), (iii) of the terrace structure given
in subsection 3.1 in terms of the Patterson data for terrace 8. Model (i) yields the lowest value
of the Patterson data for the Bergman top faces, along with a larger value for the vertex points.
Models (ii) and (iii) give the same larger values of the Patterson function for the small or the
large top pentagons, but differ as regards the presence or absence of vertex points (respectively).
All three models are compatible with the qualitative set of experimental Patterson data [15].

4. Conclusions

We analyse a tiling model for the surface structure of i-Al68Pd23Mn9 quasicrystals perp-
endicular to a fivefold axis. The surfaces are interpreted as terminations in atomic planes
from the bulk tiling model decorated by Bergman clusters. The model is analysed in a window
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Figure 13. The Patterson functionP as in figure 12 as a function of the Roman numerals I′, I, . . . ,X
for the three valuesη1, η2, η3 from top to bottom.

approach. The quasiperiodic relations between planes occupied by atoms are rigorously and
quantitatively derived from the bulk model. Sequences of planes are shown to be generated
and connected by infinite Fibonacci lines running through the tiling. Both the density and the
Patterson data for different types of atomic position are computed in closed form and shown
to vary strongly between the planes.

In the planes, we consider vertex positions of the tiling and pentagonal positions arising
from faces or top cuts through the Bergman clusters. Changes of their correlation between the
planes are analysed in three alternative models. The pentagonal holes observed in [15] admit
an interpretation in terms of these pentagons. If they arise from the Bergman top pentagons,
their observed larger size must reflect a local reconstruction of the surface. If they arise from
the Bergman top-cut pentagons, they agree with the observed size.

The geometries, the spacings, the densities, and the Patterson functions are computed
from the bulk model. The sequence and spacing of terraces and the available Patterson data
from [15] are well reproduced. The observed Fibonacci string of planes yields information on
the density of atomic positions. The observed size of the terraces shows some correlation with
the model structure in the planes.

More detailed experimental studies of the terrace structure in icosahedral quasicrystals
are suggested.
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